Structure of (η-1,5-Cyclooctadiene) [1-3- η-(exo-4-methyl-1,2,3,4tetraphenylcyclobutenyl)]rhodium(I)

By F. Ekkehardt Hahn, David C. Eisenberg, Joel W. Gohdes and James P. Thiel
Department of Chemistry, University of California, Berkeley, CA 94720, USA

(Received 20 April 1987; accepted 13 July 1987)

Abstract

Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{29} \mathrm{H}_{23}\right)\right], \quad M_{r}=582 \cdot 60\), tetragonal, $P 4_{2} / n, a=23.807$ (2), $c=9.8849$ (9) \AA, V $=5602.4(13) \AA^{3}, \quad Z=8, \quad D_{m}=1.37, \quad D_{x}=$ $1.381 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $6.218 \mathrm{~cm}^{-1}, F(000)=1208, T=293 \mathrm{~K}, R=0.0254$ for 2612 observed reflections with $F_{o}^{2} \geq 3 \sigma\left(F_{o}^{2}\right)$. The structure consists of an Rh^{1} atom coordinated by the four vinylic C atoms of the 1,5 -cyclooctadiene ligand and by the three allylic C atoms of the cyclobutenyl ring. The methyl group of the 4 -methyl-1, $2,3,4$-tetraphenylcyclobutenyl ligand is in the exo position.

Introduction. In the course of studying the insertion of acetylenes into rhodium-methyl bonds, the title compound (1) was obtained according to the equation:

The crystal-structure determination was undertaken as part of a study to determine the mechanism by which (1) is formed.

Experimental. Orange crystals provided by Dr S. M. Fine (Fine, 1986); D_{m} measured by flotation method in aqueous KI solution; sample crystal was $0.15 \times$ $0.15 \times 0.30 \mathrm{~mm}$. Crystal was mounted on glass fiber in air using polyacrylate cement. Precession photographs, tetragonal; Enraf-Nonius CAD-4 diffractometer, graphite-monochromatized Mo $K \alpha$ radiation. Lattice parameters from setting angles of 24 reflections, $24 \leq 2 \theta \leq 26^{\circ}$; data collected $4144,2 \theta \leq 45^{\circ}, 0 \leq$ $h \leq 25, \quad 0 \leq k \leq 25, \quad 0 \leq l \leq 10 ; \quad$ scan \quad speed $\leq 6.7^{\circ} \mathrm{min}^{-1}, \theta-2 \theta$ scan, variation in three intensity standards $<1 \cdot 3 \%$; Lorentz and polarization correction applied (Frenz, 1985); negligible absorption, ψ-scan variation $\pm 1 \cdot 3 \%$, 3663 unique reflections, 2612 with $F_{o}{ }^{2} \geq 3 \sigma\left(F_{o}{ }^{2}\right)$. Structure solved by Patterson methods and ΔF syntheses; full-matrix least-squares refinement for 364 parameters with anisotropic temperature factors for all non- H atoms, all H atoms were located in a ΔF map, H atoms were assigned idealized coordinates ($\mathrm{C}-\mathrm{H} 0.95 \AA$) and isotropic thermal parameters
$B(\mathrm{H})=1.3 \times B_{\text {eq }}(\mathrm{C})$. Function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right), \sigma^{2}\left(F_{o}^{2}\right)=\left[\sigma_{o}^{2}\left(F_{o}^{2}\right)+\right.$ $\left.\left(p F_{o}\right)^{2}\right], p=0.03 ; ~ R=2.54 \%, w R=3 \cdot 29 \%$, GOF $=1.419$, max. shift/e.s.d. $<0 \cdot 00$; highest peak in final ΔF map $0.246 \mathrm{e} \AA^{-3}$; atomic scattering factors, f^{\prime} and $f^{\prime \prime}$ terms for all non-H atoms were taken from International Tables for X-ray Crystallography (1974). All computations were carried out on a Microvax II computer using the $S D P$ system of programs (Frenz, 1985).

Discussion. The structure of the title compound is shown in Fig. 1 (ORTEP). Positional parameters of the non- H atoms and the equivalent values of the anisotropic temperature factors are given in Table 1,* selected bond lengths, angles and torsion angles in Table 2.

[^0]

Fig. 1. ORTEP (Johnson, 1965) drawing and numbering scheme for (1). The ellipsoids are scaled to represent 50% of the probability surface. H atoms are omitted for clarity.

Table 1. Final fractional atomic coordinates and equivalent isotropic thermal parameters for (1) with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}\left({ }^{\text {d }}{ }^{2}\right)^{*}$
Rh	0.03183 (1)	$0 \cdot 20660$ (1)	-0.01726 (3)	2.928 (6)
C(1)	-0.0698 (2)	0.2181 (2)	0.3121 (4)	4.37 (9)
C(2)	-0.0295 (1)	0.2600 (1)	0.0872 (3)	2.93 (7)
C(3)	-0.0243 (2)	0.2148 (1)	0.2003 (3)	3.17 (8)
C(4)	-0.0408 (1)	0.1738 (1)	0.0831 (3)	2.97 (7)
C(5)	-0.0583 (1)	0.2206 (1)	0.0022 (3)	2.95 (7)
C(6)	0.1008 (2)	0.2576 (2)	-0.0934 (4)	4.60 (9)
C(7)	0.0587 (2)	0.2558 (2)	-0.1883 (4)	4.23 (9)
C(8)	0.0604 (3)	0.2210 (2)	-0.3154 (5)	7.4 (1)
C(9)	0.0550 (2)	$0 \cdot 1590$ (2)	-0.2985 (4)	$5 \cdot 8$ (1)
$\mathrm{C}(10)$	0.0481 (2)	0.1381 (2)	-0.1551 (4)	$4 \cdot 15$ (9)
C(11)	0.0904 (2)	0.1403 (2)	-0.0605 (4)	4.40 (9)
C(12)	0.1492 (2)	$0 \cdot 1630$ (2)	-0.0886 (5)	$6 \cdot 7$ (1)
C(13)	0.1541 (2)	0.2239 (2)	-0.1014 (7)	8.4 (2)
$\mathrm{C}(21)$	-0.0296 (1)	0.3218 (1)	0.0959 (3)	2.91 (7)
C (22)	-0.0234 (2)	0.3487 (1)	0.2201 (4)	3.53 (8)
C(23)	-0.0245 (2)	$0 \cdot 4070$ (2)	0.2281 (4)	4.46 (9)
C(24)	-0.0321 (2)	0.4389 (2)	$0 \cdot 1143$ (4)	4.8 (1)
C(25)	-0.0384 (2)	0.4129 (2)	-0.0094 (4)	4.57 (9)
C(26)	-0.0372 (2)	$0 \cdot 3548$ (2)	-0.0180 (4)	3.68 (8)
C(31)	0.0337 (2)	0.2038 (1)	0.2591 (3)	3.26 (8)
C(32)	0.0459 (2)	0.1522 (2)	0.3180 (4)	4.19 (9)
C(33)	0.0987 (2)	0.1401 (2)	$0 \cdot 3673$ (4)	5.0 (1)
C(34)	0.1398 (2)	$0 \cdot 1804$ (2)	$0 \cdot 3641$ (4)	$5 \cdot 3$ (1)
C(35)	$0 \cdot 1286$ (2)	$0 \cdot 2324$ (2)	$0 \cdot 3094$ (4)	$5 \cdot 2$ (1)
C(36)	0.0756 (2)	0.2439 (2)	0.2561 (4)	3.99 (9)
C(41)	-0.0659 (1)	0.1170 (1)	0.0917 (3)	3.07 (8)
C(42)	-0.1243 (2)	0.1113 (2)	0.0876 (4)	3.93 (9)
C(43)	-0.1493 (2)	0.0589 (2)	0.0988 (4)	4.41 (9)
C(44)	-0.1169 (2)	0.0113 (2)	$0 \cdot 1139$ (4)	4.43 (9)
C(45)	-0.0592 (2)	0.0166 (2)	0.1181 (4)	4.24 (9)
C(46)	-0.0338 (2)	0.0688 (1)	$0 \cdot 1069$ (3)	3.54 (8)
C(51)	-0.0975 (1)	0.2237 (1)	-0.1134 (3)	3.00 (8)
C(52)	-0.1379 (2)	0.2654 (2)	-0.1207 (4)	$4 \cdot 15$ (9)
C(53)	-0.1760 (2)	0.2661 (2)	-0.2266 (5)	$5 \cdot 1$ (1)
C(54)	-0.1739 (2)	0.2258 (2)	-0.3263 (4)	$5 \cdot 2$ (1)
C(55)	-0.1340 (2)	0.1840 (2)	-0.3192 (4)	5.0 (1)
C(56)	-0.0967 (2)	0.1827 (2)	-0.2127 (4)	4.24 (9)

The geometry of (1) is based upon four-coordinated Rh^{1}, with the Rh atom at the center of a rectangle defined by the midpoints of the cyclooctadiene olefin bonds, $C(6,7)$ and $C(10,11)$, and the allylic carbon atoms $\mathrm{C}(2)$ and $\mathrm{C}(4)$. The average Rh to cyclooctadiene carbon bond length of $2 \cdot 160$ (12) \AA is in the range found in $(\text { cod })_{2} \mathrm{Rh}_{2}(\mu-\mathrm{Cl})_{2}$ (Ibers \& Snyder, 1962) of $2 \cdot 12$ (3) \AA, (cod)Rh $\left(\eta^{3}\right.$-cyclooctadienyl) (Pickardt \& Stühler, 1980) of 2.23 (13) \AA, and (cod) $\operatorname{Rh}\left(\eta^{3}\right.$-benzyl) (Stühler \& Pickardt, 1981) of $2 \cdot 15$ (3) \AA. The rhodium to η^{3}-cyclobutenyl carbon bond lengths are rather asymmetric; the $\mathrm{Rh}-\mathrm{C}(4)$ distance is 2.141 (3) \AA, the $\mathrm{Rh}-\mathrm{C}(2)$ distance is $2 \cdot 194$ (3) \AA, and the $\mathrm{Rh}-\mathrm{C}(5)$ distance is $2 \cdot 179$ (3) \AA, which average to $2 \cdot 17$ (3) \AA. These distances are in the range found in related rhodium allyls, (cod) $\operatorname{Rh}\left(\eta^{3}\right.$-cyclooctadienyl) of $2 \cdot 17$ (7) \AA (Pickardt \& Stühler, 1980), (cod) $\operatorname{Rh}\left(\eta^{3}-\right.$ benzyl) of 2.21 (8) \AA (Stühler \& Pickardt, 1981), and of 2.25 (8) \AA (Ebbinghaus, Madigan, Osterberg \& Nathan, 1988) in $\left\{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}\right\}\right.$ -$\operatorname{Rh}\left(\eta^{3}\right.$-benzyl).

The bond parameters in the cyclobutenyl portion of (1) are similar to those found in two other cyclo-butenyl-metal complexes, $\quad \mathrm{CpNi}\left[\eta^{3}-\mathrm{C}_{4}\left(\mathrm{CH}_{3}\right)_{4}(\mathrm{Cp})\right]$

Table 2. Selected bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left(^{\circ}\right)$ for (1)

(Oberhansli \& Dahl, 1965) and $\mathrm{CpRu}\left(\mathrm{Cl}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4}-\right.$ OCH_{3}) (Albers, Liles, Robinson, Shaver \& Singleton, 1986). In particular, the angles at the allylic C atoms are near 90° and the angle at the alicyclic C atom is near 80° in all three structures. The allylic carboncarbon bond lengths, $C(2)-C(5)$ and $C(4)-C(5)$, in (1) are ca $0.1 \AA$ shorter than the $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(3)-$ $\mathrm{C}(4)$ bonds. This is expected since the former are based upon $s p^{2}$-hybridized C atoms and the latter are based upon $s p^{3}$-hybridized C atoms. The fold angle, defined by the intersection of the planes defined by $\mathrm{C}(2,4,5)$ and $\mathrm{C}(2,3,4)$ is $21 \cdot 2(5)^{\circ}$. The equivalent dihedral angle in $\mathrm{CpNi}\left[\mathrm{C}_{4}\left(\mathrm{CH}_{3}\right)_{4}(\mathrm{Cp})\right]$ is 25°.

We thank Dr F. J. Hollander, Professor K. N. Raymond and Mr P. H. Smith for their assistance. FEH acknowledges financial support from the German Academic Exchange Service through a NATO postdoctoral fellowship.

References

Albers, M. O., Liles, D. C., Robinson, D. J., Shaver, A. \& Singleton, E. (1986). J. Chem. Soc. Chem. Commun. pp. 645-647.
Ebbinghaus, B., Madigan, M. T., Osterberg, C. E. \& Nathan, L. C. (1988). Acta Cryst. C44, 21-23.

Fine, S. M. (1986). PhD Thesis, Univ. of California, Berkeley, USA.

Frenz, B. A. (1985). Structure Determination Package. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands, revised locally by Dr F. J. Hollander.
Ibers, J. A. \& Snyder, R. G. (1962). Acta Cryst. 15, 923-930.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Oberhansli, W. \& Dahl, L. F. (1965). Inorg. Chem. 4, 150-157.
Pickardt, J. \& Stühler, H. O. (1980). Chem. Ber. 113, 1623-1626.
Stühler, H. O. \& Pickardt, J. (1981). Z. Naturforsch. Teil B, 36, 315-321.

Acta Cryst. (1988). C44, 21-23

Structure of (α-2- η-Benzyl)($\boldsymbol{P}, \boldsymbol{P}^{\boldsymbol{P}} \boldsymbol{P}^{\prime}, \boldsymbol{P}^{\prime}$-tetra-tert-butylethylenebisphosphine)rhodium(I)

By Bart Ebbinghaus,* Maria T. Madigan* and Carolyn E. Osterberg \dagger
Department of Chemistry, University of California, Berkeley, CA 94720, USA

and Lawrence C. Nathan
Department of Chemistry, Santa Clara University, Santa Clara, CA 95053, USA

(Received 30 April 1987; accepted 11 August 1987)

Abstract

Rh}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)\left(\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{P}_{2}\right)\right], \quad M_{r}=512.50\), triclinic, $\quad P \overline{1}, \quad a=9.5973$ (8),$\quad b=10.4471$ (15), $\quad c=$ 14.3667 (15) $\AA, \quad \alpha=88.46$ (1), $\quad \beta=83.92$ (1), $\quad \gamma=$ $67.95(1)^{\circ}, V=1327.5(3) \AA^{3}, Z=2, D_{m}=1.29, D_{x}$ $=1.283 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha \quad(\lambda=0.7107 \AA), \quad \mu=$ $7.59 \mathrm{~cm}^{-1}, F(000)=544, T=295 \mathrm{~K}, R=0.022$, $w R$ $=0.033$ for 3152 independent reflections with $F_{o}>$ $3 \sigma\left(F_{o}\right)$. The Rh atom is in a distorted square-planar environment in which two coordination sites are occupied by an allylic bond to the benzyl ligand. The benzyl ligand is unsymmetrically bound: the $\mathrm{Rh}-\mathrm{C}(6)$ and $\mathrm{Rh}-\mathrm{C}(7)$ distances are 2.371 (2) and $2 \cdot 162$ (2) \AA, respectively. The non-allylic portion of the ligand exhibits the expected bond-length alternation.

Introduction. The title compound, $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)\right.$ $\left.\operatorname{Rh}\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]$, is the product of the reaction of $\left[(\mu-\mathrm{Cl}) \mathrm{Rh}\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]_{2}$ and benzyllithium. The fluxional nature of the product in solution is confirmed by the equivalence of the two ortho and meta C atoms in the ${ }^{13} \mathrm{C}$ NMR spectrum (Del Paggio, 1986; Del Paggio, Andersen \& Muetterties, 1987). In this crystal structure determination, the title compound is shown to be an approximately square-planar complex. The diene-like bond-length alternation between those C atoms not involved in allylic bonding is consistent with a simple resonance model of ligand bonding and is typical of η^{3}-benzyl complexes (Cotton \& LaPrade, 1968; Behrens \& Weiss, 1975; Becker \& Stille, 1978; Sonada, Bailey \& Maitlis, 1979).

[^1]Experimental. The complex $\left[\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{Rh}\right.$ $\left.\left\{\left(\left\{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}\right\}\right]$, prepared as described previously (Del Paggio, 1986; Del Paggio, Andersen \& Muetterties, 1987), was crystallized from pentane. The density was measured by flotation in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{KI}$. An orange parallelepiped crystal measuring $0.45 \times$ $0.25 \times 0.15 \mathrm{~mm}$ was mounted in a 0.3 mm quartz capillary under argon. Data were collected on an Enraf-Nonius CAD-4 diffractometer with graphitemonochromatized Mo $K \alpha$ radiation. Accurate cell dimensions and orientation matrix were obtained by centering 24 reflections (12 Friedel pairs) with $27 \leq$ $2 \theta \leq 30^{\circ} .3791$ reflections were collected, of which 3463 were independent and 3152 were observed based on $I>3 \sigma(I)$. The $\theta-2 \theta$ scan mode was used ($3 \leq$ $2 \theta \leq 45^{\circ}$) and the index ranges were $0 \leq h \leq 10$, $-11 \leq k \leq 11$, and $-15 \leq l \leq 15$. Intensity checks every 2 h on three standard reflections indicated no significant decay. ψ scans on four reflections yielded an average maximum variation in intensity of $3 \cdot 2 \%$; thus, no absorption correction was applied.

The data were reduced and the structure solved using the Enraf-Nonius Structure Determination Package (Frenz, 1985). The structure was refined in space group $P \overline{1}$; initial positions of the Rh and two P atoms were determined from a three-dimensional Patterson map. H atoms (not refined) were included at idealized positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ and with isotropic thermal parameters set at 1.3 times those of the corresponding C atom. Full-matrix least-squares refinement of positional and anisotropic thermal parameters of non -H atoms converged at $R=0.022, w R=0.033$ and $S=1.813$. A secondary-extinction parameter was not included in final refinements. The function mini-

[^0]: * Tables of H -atom coordinates, anisotropic temperature factors, distances and angles in the phenyl rings, least-squares planes and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44235 (29 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.
 \dagger Current address: Department of Chemistry, University of Utah, Salt Lake City, UT 84112 , USA.

